8/31/17

CS61C:

Great Ideas in Computer Architecture

Lecture 3: Pointers

Krste Asanovi¢ & Randy Katz

http://inst.eecs.berkeley.edu/~cs61c

Agenda

* Pointers in C

* Arrays in C

* This is not on the test
* Pointer arithmetic

* Strings, main

* And in Conclusion, ...

Cs6lc Lecture 3: Pointer:

Components of a Computer

P Memol
rocessor Enable? ry
| gesdwre,
’ 1 ;
Datapath rogram
Address |

I
_— Write
Registers Data |

Computer Memory

TYPE muﬂ._

int a;
a = -85;
printf(“%d”, a);

108
107
106
105
104
103
102
101

Arithmetic & Logic Unit
Data
- Do not confuse memory address and value.
) Processor-Memory Interface 1/0-Memory Interfaces Nor a street address‘ withfthe person living there.
Pointers Pointer Type
* Cspeak for “memory addresses * Pointers have types, like other variables
* Notation 108 — “type of object” the pointer is “pointing to”
int *x; // variable x is an address to an int 107

inty=9; //yisanint

X = &y; // assign address of y to x
// “address operator”

intz=*x; //assignwhatx is pointing to to z
// “dereference operator”

*x=-7; // assign -7 to what x is pointing to

What are the values of x, y, z?

106
105
104
103
102
101
100

* Examples:
-int *pi; // pointer to int
—double *pd; // pointer to double
-char *pc; // pointer to char

s 6lc Lecture 3: Pointers

8/31/17

Generic Pointer (void *)

* Generic pointer
— Points to any object (int, double, ...)

— Does not “know” type of object it references
(e.g. compiler does not know)

* Example:
- void *vp; // vp holds an address to
// object of "arbitrary” type

* Applications
— Generic functions e.g. to allocate memory
- malloc, free

® accept and return pointers of any type
= see next lecture

s 6ic Lecture 3: Pointers 7

Pointer to struct

typedef struct { int x, y; } Point;

| a (
Point pt = { @, 5 };

1 A (| 1 1
Point *xpt_ptr = &pt;
(kpt_ptr).x = (kpt_ptr).y;

pp—>Xx = pp—>Y;

s 6ic Lecture 3: Pointers

#include <stdio.h>
[_vpe [Name | ddr | value |
int main(void) {
int a = 3, b = -7;
int *pa = &a, *pb = &b; 108
*pb = 5; 107
if (*pb > *xpa) a = *pa — b; 106
printf(“a=%d b=%d\n", a, b);
3} 105
[Answer | 2| b oo
103
RED 3 7 oo
GREEN 4 5 101
ORANGE -4 5 100
VELLOW -2 5

What’s wrong with this Code?

#include <stdio.h>

int main(void) {
int a;
int *p;
printf(”a = =d, p = %p, *p = %d\n",
a, p, *p);
return 0;

Output:
a=1853161526,

p = 0x7fff5be57c08,
*p=0

Cs6lc Lecture 3: Pointers

Pointers as Function Arguments

#include <stdio.h= e | vame | nior | vaue |
void f(int x, int *xp) { 1.1.1.3
x = 5; *p = —9;
y 107
106
int main(void) { 105
int a =1, b = -3; 104
f(a, &b); 103
N printf(“a=%d b=%d\n", a, b); =

101
100

¢ C passes arguments by value

* i.e. it passes a copy

« value does not change outside function
* To pass by reference use a pointer

cs6lc

Parameter Passing in Java
* “primitive types” (int, char, double)
- by value (i.e. passes a copy)
* Objects
- by reference (i.e. passes a pointer)
- Java uses pointers internally
= But hides them from the programmer
— Mapping of variables to addresses is not defined in Java
language
= No address operator (&)

= Gives JVM flexibility to move stuff around

Lecture 3

8/31/17

Your Turn!

#include <stdio.h> [_tvpe | Name | pdir | Value |
void foo(int *x, int xy) { 1.1.).5
if (kx < ky) {
int t = *x; 104
*X = kY 103
*y = t; 102
101
¥
100
int main(void) {
int a=3, b=1, c=5;
foo(sa, &b); [answer || b | c |
foo(&b, &c); RED 5 3 1
printf(“a=%d b=%d\n", a, b); GREEN 1 5 3
}
ORANGE 3 3 1
VELLOW 3 5 1

Agenda

Pointers in C

* Arrays in C

* This is not on the test

Pointer arithmetic
Strings, main

* And in Conclusion, ...

Lecture 3: Pointer: 14

C Arrays

* Declaration: [tyoe | Name [adar | vaie |
-// allocate space
// unknown content 108
int a[5]; 107
106
-// allocate & initialize 105
int b= {3, 2, 1 }; 100
* Element access: 103
-b[1]; 102
-a[2] = 7; 101
100

* Index of first element: 0

s 6lc Lecture 3: Pointers

Beware: no array bound checking!

#include <stdio.h>

int main(void) {
int all = {1, 2, 3 };
for (int i=0; i<4; i++)
printf(“al%d] = %d\n", i, alil);

¥
Output: a[0] = 1 Often the result is much worse:
a[l] = 2 * erratic behavior
a[2] = 3 * segmentation fault, etc.
a[3] = -1870523725 ¢ Cdoes not know array length!

Lecwres: PPRESS 3s grgument into functions

Use Constants, Not Literals

* Assign size to constant

- Bad pattern
int i, ar[10];
for(i = 0; i < 10; i++){ ... }

- Better pattern
const int ARRAY SIZE = 10;
int i, a[ARRAY_SIZE];
for(i = 0; i < ARRAY SIZE; i++){ ... }

* “Single source of truth”
~ Avoiding maintaining two copies of the number 10
~ And the chance of changing only one
- DRY: “Don’t Repeat Yourself”

Pointing to Different Size Objects

* Modern machines are “byte-addressable”
— Hardware’s memory composed of 8-bit storage cells,
each has a unique address
« Type declaration tells compiler how many bytes to fetch on each access
through pointer
- E.g., 32-bit integer stored in 4 consecutive 8-bit bytes

short *y int *x char *z

l

59 58| 57| 56§55 54 53 52] 51] 50 49 4847 46 45 44] 43l 42 Byte address

16-bit short stored
in two bytes

8-bit character
stored in one byte

32-bit integer
stored in four bytes

Lecture 3

8/31/17

sizeof() operator Agenda

#include <stdio.h>

int main(void) { Output: * Pointers in C

int array([5];

struct { short a; char c; } s; * Arrays in C

prmtf(":uoum 21u\n* sizeof(d)); double: 8 . y.

printf(varray: szluwn, sizeot(array); array: 20 * This is not on the test
b3

St 4 . . .
* Pointer arithmetic

* sizeof(type)
— Returns number of bytes in object

e st oo e * Strings, main
* And in Conclusion, ...

= Some “old” computers use other values, e.g. 6 bits per "byte”
* By definition, in C
- sizeof (char)==1
* For all other types result is hardware and compiler dependent
~ Do not assume - Use sizeof!

19 cs6lc Lecture 3: Pointers

s 6lc Lecture 3: Pointers

So what did Dr. Moore Predict? Dr. Moore’s Vision (in 1965)

* Transistor* cost as a function of
components per chip
- Minimum
— Shifts to right:
= As time passes, cost decreases
provided we get more
= Fortunately we always had good
ideas to use more:
Computers
Memory

Smartphones
Internet of Things? » Something useful that is getting always better and less expensive is good
for

Relative Manufacturing Cost/Component

0
Mamber of Gomponants P esgrated Gk * Why a minimum? :
) — Society

— If too small, some don’t work! N

- Business

* Transistors: basic elements making up computers (see later)
Lecture 3: Pointers Cs6lc Lecture 3: Pointers

Why do people say Moore’s Law is over? ps are made) $5-10B

hnelogy i i ickar Suppliers.

Gate Cost Trend

Final Four:

Intel

TSMC

Samsung

Global Foundries (was |

Gost par 100M Gatos
z
8

g

280

2m teem fom | Tom

00
sm 45400

Soutce: ntemational Business Strteges, .

8/31/17

Break!

8/31/17 Fall 2017 - Lecture #3 25

Agenda

* Pointers in C

* Arrays in C

* This is not on the test
* Pointer arithmetic

* Strings, main

* And in Conclusion, ...

s 6ic Lecture 3: Pointers

Pointer Arithmetic - char

#include <stdio.h>
Type Byte Value
Addr*

int main(void) {
char cll = { 'a’, 'b" };
char #pc = ¢;
pe++; 108
printf("xpc=%c\n c=%p\npc=%p\npc-c=%1d\n",
*pC, C, pc, pc—c); 107
106
int il = { 10, 20 };
int #pi = i; 105
pi++; 104
printf("«pi=%d\n i=%p\npi=%p\npi-i=%ld\n",
#pi, i, pi, pi-i); 103
¥ 102
*pc = Db 101
c = 0x7fff50f54b3e P
pc = 0x7fff50f54b3f
pc-c = 1

s 61c 27

*Computer only uses byte addresses. Tables with blue headers are simplifications.

Pointer Arithmetic - int

#include <stdio.h>

int main(void) {

char c[l ={ 'a’, 'b' };
char *pc = ¢;
pe+;

printf("+pc=%c\n c=%p\npc=%sp\npc—c=%ld\n",
*pc, €, pc, pc—c);

int il = { 10, 20 };

int #pi = i;

pi++;

printf(“xpi=%d\n i=%sp\npi=Ssp\npi-i=%ld\n",
*pi, i, pi, pi-i);

¥
*pi = 20
i = 0x7£££50£54b40
pi = 0x7£f£f£50£54b44
pi-i =1

Lecture 3: Pointers

Type Byte Value
Addr

108
107
106
105
104
103
102
101
100

Array Name / Pointer Duality

* Array variable is a “pointer” to the first (O*) element

* Can use pointers to access array elements
- char *pstr andchar astr[] are nearly identical declarations
— Differ in subtle ways: astr++ is illegal

Consequences:
- astr isan array variable, but works like a pointer
— astr[0] isthe same as *astr
— astr[2] isthesame as * (astr+2)
— Can use pointer arithmetic to access array elements

s 61c Lecture 3: Pointers 29

Arrays versus Pointer Example
[e | Name | niir |_vaie |

#include <stdio.h>

int main(void) {
// array indexing
int all = { 10, 20, 30 };
printf(“alll=%d, *(p+1)=%d, p[2]=%d\n"
alll, =*(a+l), *=(&al2]));
E thmeti

// point
int #p = a;

for (int i=0;
printf("a

i<3; i++)
[%d] = %d, ", i, alil);

¥

Output:
a[1]=20, *(p+1)=20, p[2]=30
a[0]=11, a[1]=22, a[2]=33

Mixing pointer and array notation can be confusing = avoid.

s 61c Lecture 3: Pointers

104
103
102
101
100

8/31/17

Pointer Arithmetic

Arrays and Pointers

* Example: Passing arrays:
int n = 3; . o explicitly
. ! * Array = pointer to the initial (Oth) array Really int *array /Dass size
int *p; element int A
p += n; // adds n*sizeof(int) to p foo (int arvayll,
P -= n; // subtracts n*sizeof(int) from p a[i] = *(a+i) unsigned int size)
{
.U v f N . . array[size - 1] ..
se only tor arrays. Never: « An array is passed to a function as a pointer }
char *p; * The array size (# of bytes) is lost!
char a, b; int
p = &aj; * Usually bad style to interchange arrays and ';'am (void)
p +=1; // may point to b, or not pointers int a[10], b[5];
. foo(a, 10).. foo(b, 5) ..
CS6lc Lecture 3: Pointers [re Pointert } 2
Arrays and Pointers Arrays and Pointers
int These code sequences have the same effect:

foo (int array[],
unsigned int size)

{
|_— What does this print? 8

printf (“%d\n”, sizeof (array));
}

... because array is really
a pointer (and a pointer is
int architecture-dependent, but
main (void) likely to be 8 on modern
{ 64-bit machines!)

int a[10], b[5]; {— What does this print? 40

.. foo(a, 10).. foo(b, 5) .. (provided sizeof (int)==4)
printf (“%d\n”, sizeof(a));

int i;

int array[5]; mmm
for (i = 0; i < 5; i++4) 106
{ 141 105
array[i] = ..;
of 104
103
int *p;

int array[5]; 102
101

}

cture 3: Pointe 34

Point past end of array?

* Array size n; want to access from 0 to n-1, but test for exit by
comparing to address one element past the array

const int Sz = 10;

int ar[Sz], *p, *q, sum = 0;

p = &ar[0]; q = &ar[SZ];

while (p '= q){

sum = sum + *p; p=p + 1;
sum += *p++;

}

* Is this legal?

* Cdefines that one element past end of array ,
i.e., not cause an error

S 61, Lecture

Valid Pointer Arithmetic

* Add/subtract an integer to/from a pointer
« Difference of 2 pointers (must both point to elements in same array)
* Compare pointers (<, <=, ==, I=, >, >=)

* Compare pointer to NULL
(indicates that the pointer points to nothing)

Everything makes no sense & is illegal:
* adding two pointers

* multiplying pointers

* subtract pointer from integer

s 61c Lecture 3: Pointers

8/31/17

Pointers to Pointers Your Turn ...
#include <stdio.h> int x[] = { 2, 4, 6, 8, 10 };
int *p = x;
// changes value of pointer
void next_el(int s#*h) { int **pp = &p; [nName | type | Adar | value |
) *h = *xh + 1; (*pp)++; 1.(.].6
* (% ++
int main(void) { ¢ (PP),)‘ 4 " igi
int All = { 10, 20, 30 }; printf("%d\n", *p); o
// p points to first element of A
int *p = A; [Answer | |
next_el(&p); RED 2 ol
// now p points to 2nd element of A 100
printf(“+p = %d\n", *xp); Gl 3
¥ ORANGE 4
Cs6lc Lecture 3: Pointers 37 YELLOW 5 38
Administrivia Break!
* Homework 0 and Mini-bio will be released by tonight \
* Lab swap policy is posted on Piazza and the website \
* Guerrilla Session and mini-tutoring session details will be
posted soon
CS6l1c Lecture 3: Pointers 39 8/31/17 Fall 2017 - Lecture #3 40

Agenda

* Pointers in C

¢ Arrays in C

* This is not on the test
* Pointer arithmetic

* Strings, main

* And in Conclusion, ...

s 61c Lecture 3: Pointers a1

C Strings

* C strings are null-
terminated character
arrays

—char s[] = "abc”;

s 61c Lecture 3: Pointers

Type Byte Value
Addr

108
107
106
105
104
103
102
101
100

8/31/17

String Example Concise strlen()

#include <stdio.h>

int slen(char s[]1) { int strlen(char *s) ({

int n = 0; char *p = s;
v:gi.lljin(i;[n] '= 0) n++; while (*p++)
} ; /* Null body of while */

int main(void) { return (p - s - 1);

char strl] = "ghc"; }
printf("str = %s, length = %d\n", str, slen(str));

¥
Output: str = abc, length =3 What happens if there is no zero character at end of string?
CS6lc Lecture 3: Pointers 43 CS6lc ecture 3: Pointer: a4
Arguments inmain () Example
#include <stdio.h>
* To get arguments to the main function, use: int main(int argc, char sargvl]) £
—-int main(int argc, char *argv[]) for (int i=0; i<argc; i++)
— argc is the number of strings on the command line printf(“arglsd] = %s\n", i, argvl[il);
—argv is a pointer to an array containing the arguments as strings b
UNIX: $ gcc -o ex Argc.c
#include <stdio.h> $./ex -g a "de f"
arg[0] = ./ex
int main(int argc, char *argv[]) { arg[l] = -g
for (int i=0; i<argc; i++) arg[2] = a
printf(“arglsd] = %s\n", i, argvlil); arg[3] =d e f
¥
Agenda And in Conclusion, ...

 Pointers are “C speak” for machine memory addresses

* Pointersin C)))))
* Pointer variables are held in memory, and pointer values are just numbers

* Arrays in C that can be manipulated by software
¢ This is not on the test * In C, close relationship between array names and pointers

* Pointers know the type & size of the object they point to
(except void *)

* Strings, main « Like most things, pointers can be used for

* Pointer arithmetic

— Pointers are powerful
- But, without good planning, a major source of errors
— Plenty of examples in the next lecture!

* And in Conclusion, ...

cs 61 Lecture 3: Pointers s 6lc Lecture 3: Pointe

